Incorporating Boron in InGaN Increases LED Efficiency at High Power

University of Michigan researchers have shown that by including the boron element in the InGaN layer in LEDs, it can reduce electron collisions and increase the light efficiency of LEDs. 72 percent of the world’s boron reserves in Turkey, would be a new hope for the lighting industry?

Incorporating Boron in InGaN Increases LED Efficiency at High Power
27.08.2020
626

University of Michigan researchers have shown that by including the boron element in the InGaN layer in LEDs, it can reduce electron collisions and increase the light efficiency of LEDs. 72 percent of the world’s boron reserves in Turkey, would be a new hope for the lighting industry?

InGaN-based visible LEDs find commercial applications in solid-state lighting and displays, but lattice mismatch limits the thickness of InGaN quantum wells that can be grown on GaN with high crystalline quality.

Since narrower wells operate at a higher carrier density for a given current density, they increase the fraction of carriers lost to Auger recombination and lower the efficiency. The incorporation of boron, a smaller group-III element, into InGaN alloys is a promising method to eliminate the lattice mismatch and realize high-power, high-efficiency visible LEDs with thick active regions.

In this work, researchers from the University of Michigan apply predictive calculations based on hybrid density functional theory to investigate the thermodynamic, structural, and electronic properties of BInGaN alloys. Their research showed that BInGaN alloys with a B:In ratio of 2:3 are better lattice matched to GaN compared to InGaN and, for indium fractions less than 0.2, nearly lattice matched.

Deviations from Vegard’s law appear as bowing of the in-plane lattice constant with respect to composition. Our thermodynamics calculations demonstrate that the solubility of boron is higher in InGaN than in pure GaN.

Varying the Ga mole fraction while keeping the B:In ratio constant enables the adjustment of the (direct) gap in the 1.75–3.39 eV range, which covers the entire visible spectrum. Holes are strongly localized in non-bonded N 2p states caused by local bond planarization near boron atoms. Their results indicate that BInGaN alloys are promising for fabricating nitride heterostructures with thick active regions for high-power, high-efficiency LEDs.

Leave a Comment
Comments - 0 Comment

No comments yet.